ktk.TimeSeries.to_dataframe#
- TimeSeries.to_dataframe()[source]#
Create a DataFrame by reshaping all data to one bidimensional table.
Undimensional data is converted to a single column, and two-dimensional (or more) data are converted to multiple columns with the additional dimensions in brackets. The TimeSeries’s events and metadata such as time_info and data_info are not included in the resulting DataFrame.
- Returns:
DataFrame with the index as the TimeSeries’ time.
- Return type:
pd.DataFrame
See also
ktk.TimeSeries.from_dataframe
,ktk.TimeSeries.from_array
,ktk.TimeSeries.to_array
Examples
Example with unidimensional data:
>>> ts = ktk.TimeSeries(time=np.arange(3) / 10) >>> ts = ts.add_data("test", np.array([0.0, 2.0, 3.0])) >>> ts.to_dataframe() test 0.0 0.0 0.1 2.0 0.2 3.0
Example with multidimensional data:
>>> ts = ktk.TimeSeries(time=np.arange(4) / 10) >>> ts = ts.add_data("test", np.repeat([[0.0, 2.0, 3.0]], 4, axis=0)) >>> ts.data["test"] array([[0., 2., 3.], [0., 2., 3.], [0., 2., 3.], [0., 2., 3.]])
>>> ts.to_dataframe() test[0] test[1] test[2] 0.0 0.0 2.0 3.0 0.1 0.0 2.0 3.0 0.2 0.0 2.0 3.0 0.3 0.0 2.0 3.0